3.592 \(\int \frac {(a+b \sec (c+d x))^2}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=175 \[ \frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {12 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d} \]

[Out]

2/7*a^2*sin(d*x+c)/d/sec(d*x+c)^(5/2)+4/5*a*b*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/21*(5*a^2+7*b^2)*sin(d*x+c)/d/se
c(d*x+c)^(1/2)+12/5*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*
cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2/21*(5*a^2+7*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Ellipti
cF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 175, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3788, 3769, 3771, 2639, 4045, 2641} \[ \frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {2 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{21 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {12 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^2/Sec[c + d*x]^(7/2),x]

[Out]

(12*a*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*(5*a^2 + 7*b^2)*Sqrt[Cos[c
 + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^2*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2))
+ (4*a*b*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(5*a^2 + 7*b^2)*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3788

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[(2*a*b)/
d, Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4045

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e
 + f*x]*(b*Csc[e + f*x])^m)/(f*m), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^2}{\sec ^{\frac {7}{2}}(c+d x)} \, dx &=(2 a b) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)} \, dx+\int \frac {a^2+b^2 \sec ^2(c+d x)}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {1}{5} (6 a b) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx-\frac {1}{7} \left (-5 a^2-7 b^2\right ) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (-5 a^2-7 b^2\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (6 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}-\frac {1}{21} \left (\left (-5 a^2-7 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {12 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a^2 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+7 b^2\right ) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.81, size = 120, normalized size = 0.69 \[ \frac {\sqrt {\sec (c+d x)} \left (\sin (2 (c+d x)) \left (15 a^2 \cos (2 (c+d x))+65 a^2+84 a b \cos (c+d x)+70 b^2\right )+20 \left (5 a^2+7 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+504 a b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{210 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^2/Sec[c + d*x]^(7/2),x]

[Out]

(Sqrt[Sec[c + d*x]]*(504*a*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 20*(5*a^2 + 7*b^2)*Sqrt[Cos[c + d*
x]]*EllipticF[(c + d*x)/2, 2] + (65*a^2 + 70*b^2 + 84*a*b*Cos[c + d*x] + 15*a^2*Cos[2*(c + d*x)])*Sin[2*(c + d
*x)]))/(210*d)

________________________________________________________________________________________

fricas [F]  time = 1.78, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}{\sec \left (d x + c\right )^{\frac {7}{2}}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

integral((b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2)/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

maple [A]  time = 4.14, size = 362, normalized size = 2.07 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (240 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-360 a^{2}-336 a b \right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (280 a^{2}+336 a b +140 b^{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-80 a^{2}-84 a b -70 b^{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a^{2}+35 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, b^{2}-126 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, a b \right )}{105 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x)

[Out]

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(240*a^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^
8+(-360*a^2-336*a*b)*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+(280*a^2+336*a*b+140*b^2)*sin(1/2*d*x+1/2*c)^4*co
s(1/2*d*x+1/2*c)+(-80*a^2-84*a*b-70*b^2)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*(2*sin(1/2*d*x+1/2*c)^2-1)
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2+35*(2*sin(1/2*d*x+1/2*c)^2-1)^(1
/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*b^2-126*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2
)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x
+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/sec(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2/sec(d*x + c)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^2/(1/cos(c + d*x))^(7/2),x)

[Out]

int((a + b/cos(c + d*x))^2/(1/cos(c + d*x))^(7/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \sec {\left (c + d x \right )}\right )^{2}}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**2/sec(d*x+c)**(7/2),x)

[Out]

Integral((a + b*sec(c + d*x))**2/sec(c + d*x)**(7/2), x)

________________________________________________________________________________________